edexcel 쁯

Mark Scheme (Results)
January 2013

GCE Chemistry (6CH05) Paper 01
General Principles of Chemistry II Transition Metals and Organic Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel. com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at:
www.pearson.com/uk

J anuary 2013
Publications Code UA034339
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 (a)}$	C		$\mathbf{1}$
(b)	A		$\mathbf{1}$
Question Number Correct Answer Reject $\mathbf{2 (a)}$ C Mark (b) A $\mathbf{1}$ (c) B $\mathbf{1}$			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$	C		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4}$	C		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{5}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{6 (a)}$	D		$\mathbf{1}$
(b)	C		$\mathbf{1}$
(c)	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{7}$	B		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{8}$	C		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{9}$	B		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 0}$	C		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 1}$	D		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 2}$	A		$\mathbf{1}$
Question Number Acceptable Answers Reject Mark $\mathbf{1 3 (a)}$ D $\mathbf{1}$ (b) B $\mathbf{1}$ (c) A $\mathbf{1}$			

Section B

Question Number	Acceptable Answers	Reject	Mark
14 (a)	$\mathbf{A}=\operatorname{copper}(\mathrm{II})$ hydroxide $/ \mathrm{Cu}(\mathrm{OH})_{2} /$ $\mathrm{Cu}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ B = copper(II) oxide / CuO $\mathbf{C}=$ tetraamminecopper (II) / $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+} /$ $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}{ }^{2+}$ ALLOW Cu($\left.\mathrm{NH}_{3}\right)_{6}{ }^{2+}$ / hexaamminecopper(II) $\mathbf{D}=$ copper $/ \mathrm{Cu} / \operatorname{copper}(0) / \mathrm{Cu}(0)$ $\mathbf{E}=\operatorname{copper}(\mathrm{II})$ sulfate $/ \mathrm{CuSO}_{4} / \mathrm{Cu}^{2+} /$ $\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$ $\mathbf{F}=$ diamminecopper(I) / $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}$ ALLOW coordination numbers 1-6 in \mathbf{F} Oxidation number separate from name IGNORE state symbols even if incorrect names without oxidation numbers except for \mathbf{D}	Formulae with incomplete or unbalanced charges Incorrect oxidation states even with correct formulae	6

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 4}$ (b)	(Dilute) sulfuric acid $/ \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ ALLOW concentrated		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 4 (c) (i)}$	(transition metal / d-block element) complex(es) /complex ion(s) IGNORE ammines	Complex molecules amines, ions, ligands	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
14 (c)(ii)	Copper ion in C has partially filled d orbital(s) / subshell / 3d ${ }^{9}$ ALLOW unpaired d electron d shell Copper ion in \mathbf{F} has (completely) filled \mathbf{d} orbitals / subshell / 3d ${ }^{10}$ Reference to complete / incomplete d orbitals max 1 EITHER Electronic transitions between partially filled (d) orbitals (of different energy) are possible OR Electronic transitions between (completely) filled (d) orbitals (of different energy) are not possible ALLOW Equivalent words for transition e.g. promotion / jump / movement Penalise use of just 'shell' once IGNORE references to electrons returning to lower energy levels and emission of light	d orbitals empty no unpaired electrons (in F) orbital (singular) Splitting impossible because d orbitals full	3

Question	Acceptable Answers	Reject	Mark
Number			
$\mathbf{1 4}$	Copper(I) is oxidized (to copper(II))	(1)	
(c)(iii)	ALLOW F / it is oxidized By oxygen / air Second mark depends on first IGNORE 'shaking'	(1)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 4 (d) (i)}$	(simultaneous) oxidation and reduction (1) OR Simultaneous increase or decrease in oxidation number of an element ALLOW 'Species' 'atoms of the same type' for 'element' Explanation in terms of copper(I) IGNORE Atom / ion / compound / substance / reactant	molecule	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 4}$	$2 \mathrm{Cu}^{+} \rightarrow \mathrm{Cu}+\mathrm{Cu}^{2+}$	Non-ionic (d)(ii) OR $2 \mathrm{CuI}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{Cu}^{2+}+2 \mathrm{HI}$ IGNORE state symbols even if incorrect	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 14 \\ & \text { (d) (iii) } \end{aligned}$	ALLOW The use of cell notation (as in the Data Booklet SEP table) in place of equations $\text { e.g. } \mathrm{Cu}^{+}(\mathrm{aq}) \mid \mathrm{Cu}(\mathrm{~s}) \mathrm{E}^{\ominus}=+0.52(\mathrm{~V})$ (from the data book the equations are) $\begin{align*} & \mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{~s}) \mathrm{E}^{\ominus}=+0.52(\mathrm{~V}) \\ & \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}(\mathrm{aq}) \mathrm{E}^{\ominus}=+0.15(\mathrm{~V}) \tag{1}\\ & \mathrm{So}^{\ominus} \text { cell }=0.52-0.15=+0.37(\mathrm{~V}) \tag{1} \end{align*}$ Correct answer including sign with no working scores full marks TE for second mark for use of $\mathrm{Cu}^{2+} \mathrm{ICu}+0.34(\mathrm{~V})$ which gives $+0.19(\mathrm{~V}) /+0.18(\mathrm{~V})$ No TE on incorrect equation in (d)(ii)	Answer without + sign	2

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & \hline 14 \\ & \text { (d)(iv) } \end{aligned}$	ALLOW In both schemes the use of cell notation (as in the Data Booklet SEP table) in place of equations e.g. $\mathrm{Cu}^{2+}(\mathrm{aq}) \mid \mathrm{Cu}(\mathrm{s}) \quad \mathrm{E}^{\ominus}=+0.34(\mathrm{~V})$ Penalise omission of electrons from equations and vertical lines from cell diagrams and reversal of equation without reversing sign. once only IGNORE omission of + sign for all E^{\ominus} values Scheme 1 (oxidation of copper) Copper (formed (by disproportionation)) is oxidized (by nitric acid) must be stated in words stand alone mark Relevant half equations are $\begin{align*} & \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{~s}) \quad \mathrm{E}^{\ominus}=+0.34(\mathrm{~V})(\mathbf{1}) \\ & 2 \mathrm{NO}_{3}^{-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\ & \mathrm{E}^{\ominus}=+0.80(\mathrm{~V}) \\ & \mathrm{OR}^{-} \\ & \mathrm{NO}_{3}^{-}(\mathrm{aq})+3 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\ & \mathrm{E}^{\ominus}=+0.94(\mathrm{~V}) \tag{1} \end{align*}$ Correct overall equation scores both marks: $\mathrm{Cu}+2 \mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{N}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{Cu}+\mathrm{NO}_{3}^{-}+3 \mathrm{H}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{HNO}_{2}+\mathrm{H}_{2} \mathrm{O}$ So E^{\ominus} cell is $+0.46(\mathrm{~V}$) (or $+0.60(\mathrm{~V}$) or just 'positive') Scheme 2 (oxidation of copper(I) Copper(I) iodide / Cu^{+}is oxidized (by nitric acid) must be stated in words stand alone mark $\begin{align*} & \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}(\mathrm{aq}) \mathrm{E}^{\ominus}=+0.15(\mathrm{~V}) \tag{1}\\ & 2 \mathrm{NO}_{3}^{-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\ & \mathrm{E}^{\ominus}=+0.80(\mathrm{~V}) \\ & \mathrm{OR} \\ & \mathrm{NO}_{3}^{-}(\mathrm{aq})+3 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\ & \mathrm{E}^{\ominus}=+0.94(\mathrm{~V}) \end{align*}$ Correct overall equation scores both marks:		4

	$2 \mathrm{Cu}^{+}+2 \mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cu}^{2+}+\mathrm{N}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ $2 \mathrm{Cu}^{+}+\mathrm{NO}_{3}^{-}+3 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cu}^{2+}+\mathrm{HNO}_{2}+\mathrm{H}_{2} \mathrm{O}$ So E cell is $+0.65(\mathrm{~V})($ or $+0.79(\mathrm{~V})$ or just (1) 'positive') IGNORE (omission of) state symbols even if incorrect	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5} \mathbf{(a) (i)}$	(vitamin C / ascorbic acid) oxidation / oxidized / oxidised	Redox / oxidation- reduction / reduction-oxidation	$\mathbf{1}$
ALLOW oxidisation			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5}$	(very) pale yellow / straw coloured (a)(ii) IGNORE 'just before the end-point' blue-black to colourless (both needed) \quad (1)	Just 'yellow'	Clear
Accept (dark) blue or black ALLOW pale yellow / straw coloured to colourless for $1 / 2$		$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
$\begin{align*} & 15 \tag{1}\\ & \text { (a) (iii) } \end{align*}$	$\begin{align*} & \text { Moles } \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}=27.85 \times 10^{-3} \times 0.0631 \\ &\left(=1.757335 \times 10^{-3}\right) \\ & \text { moles of } \mathrm{I}_{2} \text { remaining }=\text { Moles } \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-} \div 2 \\ & \quad=27.85 \times 10^{-3} \times 0.0631 \div 2 \\ &=8.786675 \times 10^{-4}=8.79 \times 10^{-4} \tag{1} \end{align*}$ Moles ascorbic acid $=$ moles I_{2} at start moles I_{2} remaining $\begin{align*} & =2.00 \times 10^{-3}-8.786675 \times 10^{-4} \\ & =1.1213325 \times 10^{-3}=1.12 \times 10^{-3} \tag{1} \end{align*}$ M_{r} (ascorbic acid) $=176$ Mass ascorbic acid in $250 \mathrm{~cm}^{3}=10 \times \mathrm{M}_{\mathrm{r}} \times$ moles ascorbic acid $\begin{align*} & =10 \times 176 \times 1.1213325 \times 10^{-3} \tag{1}\\ & (=1.97355) \end{align*}$ Percentage ascorbic acid in tablet $100 \times$ mass ascorbic acid in $250 \mathrm{~cm}^{3} \div 2$ $\begin{align*} & =100 \times 10 \times 176 \times 1.1213325 \times 10^{-3} \div 2 \\ & =98.67726=98.7 \% \tag{1} \end{align*}$ IGNORE SF except 1 SF Premature rounding gives 98.5% (5) Correct answer with no working scores full marks TE at each stage of the calculation.	Answers greater than 100\%	5

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5 (a) (i v) ~}$	EITHER Using larger mass reduces the percentage error / uncertainty (in weighing)	Just 'reduces the percentage error'	$\mathbf{1}$
	OR Using larger amount reduces the percentage error / uncertainty in weighing OR Reverse discussion of two tablets	Titration value will be larger (with four tablets) so reduces the percentage error (in volume measurement)	ALLOW using four tablets gives a more representative sample

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5 ~ (b) (i)}$		2	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5}$ (b)(ii)	First mark Use of (plane-) polarized light (mentioned (1) somewhere) ALLOW Use a polarimeter Second mark Pure optical isomer / enantiomer) rotates the plane of (plane-) polarized light OR racemic mixture has no effect on the plane of (plane-) polarized light (1)		$\mathbf{2}$
IGNORE optically active / inactive ALLOW rotates plane-polarized light scores 2			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5 (b) (i i i)}$	(Ester group / vitamin C / it) is hydrolysed ALLOW Vitamin C is oxidized Ester / vitamin C is broken down to form carboxylic acid and alcohol (groups) IGNORE Just 'breaks down'	C=O is broken	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 (a) (i)}$	The delocalization of the (π) electrons of the ring make benzene more stable (than 1,3,5- (1) cyclohexatriene)		$\mathbf{2}$
	IGNORE bonding in benzene is strong Substitution retains this (stable) arrangement OR Addition removes this (stable) arrangement (1)		

Question Number	Acceptable Answers	Reject	Mark
16(a)(ii)	 Formation of electrophile (curly arrow, structural formulae not required). Positive charge may be anywhere on the electrophile ALLOW $\mathrm{HCl}+\mathrm{CO}$ for HCOCl ALLOW Non-displayed electrophile Curly arrow from benzene ring to electrophile Wheland structure with gap opposite tetrahedral carbon Curly arrow from $\mathrm{C}-\mathrm{H}$ bond into ring and formation of correct organic product OR Kekulé structures IGNORE Use of AlCl_{4}^{-}to pick off proton Proton product First curly arrow may come from any part of the delocalisation circle Second curly arrow may come from any part of the C-H bond Positive charge on the Wheland structure may be in any part of the horseshoe	$\text { - } \mathrm{COH} /-\mathrm{HCO}$ Positive charge on the tetrahedral carbon	4

Question Number	Acceptable Answers	Reject	Mark
16(a)(iii)	In each step the second mark is dependent on the first Step 2 Potassium dichromate((VI)) / $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ / sodium dichromate((VI)) / $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ ALLOW Potassium manganate ((VII)) / KMnO_{4} Sodium manganate ((VII)) / NaMnO_{4} Stand alone mark Sulfuric acid / $\mathrm{H}_{2} \mathrm{SO}_{4}$ (ALLOW nitric acid) Ignore 'concentrated' ALLOW Acidified potassium (/ sodium) dichromate((VI)) OR Acid and potassium (/ sodium) dichromate((VI)) $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ and $\mathrm{H}^{+} \mathrm{OR}$ acidified dichromate((VI)) (1) Step 3 Lithium tetrahydridoaluminate((III)) / LiAlH ${ }_{4}$ OR Lithium aluminium hydride Stand alone mark (Dry) ether / ethoxyethane / (di)ethyl ether (1) Sodium borohydride / NaBH_{4} in ethanol, alkali or water scores $1 / 2$	Incorrect oxidation number Hydrochloric acid Hydrogen and catalyst / Tin and HCl	4

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 (b)}$	Marking Point 1 Electron density of the ring increased (1) Stand alone mark Marking Point 2 Due to donation of oxygen / OH group lone pair to the ring (1) Marking Point 3 and 4 Any two from in phenol oxygen / OH group attached directly to ring Oxygen / OH group in phenylmethanol too far away / not attached directly to ring (In phenol) lone pair overlaps with the π electrons / delocalised electrons (of the ring) ALLOW p orbital for lone pair for this mark (2)	$\mathbf{4}$	

Total for Q16 = 14 Marks
TOTAL FOR SECTION B = 50

Section C

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (a) (\mathbf { i) }}$	There is a barrier to rotation about a (C=C) bond		
	ALLOW restricted / limited / no rotation (1)	Just 'molecule cannot rotate'	$\mathbf{2}$
	Each carbon atom (in the C=C double bond) has (two) different atoms / groups attached (1) IGNORE reference to priority groups		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (a) (i i)}$	There is a barrier to / restricted rotation about the ring OR The ring behaves like a double bond	Reference to benzene ring	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (a) (\text { iii) }}$		Omission of amine CH_{2}	$\mathbf{1}$
	Any diagram of the correct molecule showing the groups (attached to the ring) on same side of the ring OR zwitterion ALLOW Amine group in skeletal form		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (a) (i v)}$	Tranexamic acid exists as a zwitterion OR Diagram of zwitterion OR Description of zwitterion formation So the (strongest) intermolecular forces are ionic (strong) ALLOW electrostatic for ionic	$\mathbf{3}$	
	IGNORE H bonding in tranexamic acid if either of the first two marks scored. Otherwise...		
	Hydrogen bonding in tranexamic acid scores 1/2 max Undecane has (only) (much weaker) London / dispersion / van der Waals / temporary induced dipole (-induced dipole) forces / interactions		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (b) (i)}$	Phosphorus(v) chloride / PCl_{5}	HCl	$\mathbf{1}$
	ALLOW phosphorus pentachloride / phosphorus(III) chloride / $\mathrm{PCl}_{3} /$ phosphorus trichloride Thionyl chloride (sulfur dichloride oxide) $/ \mathrm{SOCl}_{2}$		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (b) (i i)}$	First mark amide linkage ALLOW CONH for amide linkage Second mark Completion of structure (brackets not required) with displayed or skeletal formula Second mark dependent on first Dimer scores amide linkage mark only	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (b) (\text { iii) }}$	Condensation / addition-elimination (polymerization)	Addition (polymerization) Elimination (polymerization) Polyamide formation	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (b) (i v)}$	Protein / proteins / polypeptide / polypeptides / peptide / peptides ALLOW Enzyme / Enzymes	Nylon Polyamide amino acids	1

Question Number	Acceptable Answers	Reject	Mark
17(c)(i)	Check sequence of letters. Candidates may have labelled the groups of hydrogen atoms with different letters, which is fine. First mark Unique NH (at e) Second mark Unique CH_{2} (at c) Third mark CH (at d) and CH (at f) with different unique labels Fourth mark (1) $2 \mathrm{CH}_{2}$ (at a) and $2 \mathrm{CH}_{2}$ (at b) with different new labels		4

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (c) (\mathbf { i i) }}$	$\mathrm{C}=\mathrm{O}$ amide (stretching vibrations are in the region) $1700-1630 \mathrm{~cm}^{-1}$	Ketone	2
	$\mathrm{N}-\mathrm{H}$ amide (stretching vibrations are in the region) $3500-3140 \mathrm{~cm}^{-1}$	(1) Amine (for amide)	
	Amide only needs to be mentioned once but...		
These answers without mention of amide max 1			
Amides have peaks in these regions max 1			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (c) (i i i)}$	Any two from In the trans isomer the (amine and acid chloride) groups are too far apart to react intramolecularly / to form M OR Because the groups are on opposite sides of the (plane of the) ring OR More likely to polymerize / react with adjacent molecules. Marks may also be scored by a reverse argument: (2) In the cis isomer the (amine and acid chloride) groups are on the same side of the (plane of the) ring So close enough to react intramolecularly / to form M (1)	bond	

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA034339
January 2013

Llywodraeth Cynulliad Cymru Welsh Assembly Government

For more information on Edexcel qualifications, please visit our website www.edexcel.com

